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Abstract

We merge a financial market model with leverage-constrained, heterogeneous agents with a reduced-

form version of the New-Keynesian standard model. Agents in both submodels are assumed to be

boundedly rational. The financial market model produces endogenously arising boom-bust cycles.

It is also capable to generate highly non-linear deleveraging processes, fire sales and ultimately a

default scenario. Asset price booms are triggered via self-fulfilling prophecies. Asset price busts are

induced by agents’ choice of an increasingly fragile balance sheet structure during good times. Their

vulnerability is inevitably revealed by small, randomly occurring shocks. Our transmission channel

of financial market activity to the real sector embraces a recent strand of literature shedding light on

the link between the active balance sheet management of financial market participants, the induced

procyclical fluctuations of desired risk compensations and their final impact on the real economy. We

show that a systematic central bank reaction on financial market developments dampens macroeco-

nomic volatility considerably. Furthermore, restricting leverage in a countercyclical fashion limits the

magnitude of financial cycles and hence their impact on the real economy.
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1 Introduction

The recent crisis has drastically shown the immense impact of financial instability on macroeconomic

outcomes. However, models linking financial cycles and the real economy are scarce so far.1 This

triggered our motivation to construct an integrated macro-finance model which allows us to analyze the

stylized impact of financial cycles on key variables such as inflation and output and to derive important

implications for monetary policy and for macroprudential regulation. For this purpose we merge a

financial market model with leverage-constrained, heterogeneous agents with a reduced-form version of

the New-Keynesian standard model. Agents in both submodels are assumed to be boundedly rational.

The financial market model produces endogenously arising boom-bust cycles. In addition, it generates

highly non-linear deleveraging processes, fire sales and ultimately a default scenario as soon as the leverage

constraint becomes binding.

The interaction channels between our two submodels are as follows: Asset price booms boost aggre-

gate demand since they induce a decrease of the risk-adjusted real interest rate while a widened output

gap in turn affects the perceived fundamental value of the representative asset on the financial market.

Thus financial market developments are found to be the key source of economic fluctuations in our model.

Asset price booms are triggered endogenously via self-fulfilling prophecies and translate into positive out-

put gaps and upward deviations of inflation from its target rate. In turn, asset price busts are induced

by agents’ choice of an increasingly fragile balance sheet structure during good times. Their vulnera-

bility is inevitably revealed by small, randomly occurring shocks which cause the need for simultaneous

deleveraging or even lead to defaults. Subsequently we obtain a pronounced increase of both the macro

risk premium and the risk-adjusted real interest rate and a sharp contraction of economic activity. Our

setup enables us to discuss a wide range of policy measures. We show that a systematic central bank

reaction on financial market developments dampens macroeconomic volatility considerably. Furthermore,

restricting leverage in a countercyclical fashion limits the magnitude of financial cycles and hence their

impact on the real economy.

1 For example, the work of Cúrdia and Woodford (2009) and Gertler and Kiyotaki (2010) features sophisticated micro-
founded DSGE models augmented with financial sectors. They are able to replicate the stylized pattern of a systemic
crisis and its real economy-impact. However these models are silent on the endogenous build-up of financial imbalances
over time. Instead, a state of financial instability is induced by exogenous shocks, for instance to capital quality or to
default rates.
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2 Literature

2.1 Central banks and financial procyclicality

The financial crisis not surprisingly led to a reintensification of the debate whether monetary policy

should pursue a financial stability objective. The so-called ’pre-crisis consensus’ stated that monetary

policy should react to financial market developments only to the extent that they directly affect inflation

and output (Issing, 2011). To preemptively tackle unsustainable developments via interest rate policy was

regarded as theoretically questionable and practically infeasible.2 However, the recent crisis once more

demonstrated that widespread financial instability poses a serious threat to output and price stability. The

ECB (2010) hence started to show some sympathy for a preemptive policy approach, even at the expense of

a potential increase of short-term inflation variability. In addition, both policymakers and academics use

to call for a second policy instrument. Of major importance is the concept of macroprudential regulation

(Borio, 2003; BoE, 2009; ECB, 2009). It can be described as a set of supervision measures which aim to

mitigate the procyclicality of the financial system as a whole, especially by employing tighter and time-

varying capital requirements and higher liquidity standards. Even though there are two instruments

for two policy goals, it is no longer possible to make a clear-cut distinction between monetary policy

exclusively fostering price-stability and macroprudential supervision which exclusively tries to dampen

financial procyclicality. Both policy fields are interdependent (Bean, 2010). Most importantly, the stance

of monetary policy affects financial market developments but the stance of macroprudential regulation

might also affect the real economy.

Our model accounts for both policy instruments. We allow the central bank to react to financial

market developments in order to prevent adverse spillovers to the real economy. And we also include the

sense of macroprudential regulation by introducing the additional instrument of countercyclical leverage

caps.

2.2 Theoretical treatment of financial procyclicality

With the obvious benefit of hindsight, pre-crisis thinking and modeling of financial procyclicality in a

macro context turned out to be insufficient. In our view, one can identify two major shortcomings.

Firstly, the debate focused on asset price bubbles emerging in partial sectors - usually stock markets

- and the difficult task of tracing out fundamental asset prices. Today, academics and policymakers

2 Pros and contras of this view has been extensively discussed by Bernanke and Gertler (2000), Cecchetti (2000), Filardo
(2001), Roubini (2006), Posen (2006), Bernanke (2010) and others.
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rather focus on the broader concept of financial procyclicality.3 Financial procyclicality means, that the

financial system with its frictions endogenously amplifies or even determines business cycle dynamics

in a welfare-decreasing way (Borio and Lowe, 2001). It is noteworthy that this definition includes the

possibility of non-linear crisis events, but their incidence is not necessary.

Secondly, financial frictions - if they showed up in a macro model at all - were thought to lie on the

borrower’s side in the form of a financial accelerator mechanism (Bernanke and Gertler, 1989, 1995).

During the last years the focus shifted towards the lender’s side in the process of financial intermedia-

tion, that is towards banks and other intermediaries. The theory of the risk-taking channel postulates a

systematic relationship between the stance of monetary policy, the level of economic activity and the risk

attitudes of financial investors (Borio and Zhu, 2008). It is argued that expansionary monetary policy

triggers endogenous responses of financial market agents, boosting their risk appetite. For example, if

agents operate under sticky return targets, a policy-induced decrease of the general level of interest rates

might force them into riskier engagements (Rajan, 2005). But the probably most important subchannel

is determined by the dynamics of leverage and by an active balance sheet management of financial in-

termediaries. (See i.a. Adrian and Shin (2009a) and Adrian and Shin (2010)). Under mark-to-market

accounting, rising asset prices lead to an improved equity base and hence to a lower leverage ratio. In

order to entirely use their now increased balance sheet capacity, financial investors issue debt securities

and use the cash inflows to purchase additional assets. This finally creates a perverse demand schedule,

since demand goes up despite of increasing asset prices and decreasing returns. This mechanism implies

a greater risk appetite, as financial investors are willing to hold the same assets with lower returns which

implies a decrease of the desired risk compensation.

Adrian et al. (2010) indeed show, that the so-called ’macro risk premium’ - which serves as a proxy

for the price of a unit of non-diversifiable market risk - is inversely related to the risk appetite of financial

investors. Risk appetite in turn is positively connected to variables capturing balance sheet growth,

especially that of market-based intermediaries. Since the expansion of balance sheets is mainly driven by

short-term collateralized borrowing, monetary policy crucially affects the conditions of these operations

by setting the level of the short-term interest rate. Hence, the stance of monetary policy and financial

stability are closely intertwined. The described mechanism obviously also works in an adverse way. Falling

asset prices lower the capital base. In order to restore the desired leverage ratio, intermediaries have to

3 Weber (2008:3) notes that “[t]he debate about monetary policy and financial markets is too often slanted to the
question on how to deal with asset price bubbles. [. . . ] In my opinion, the view of monetary policy and asset prices
is too narrow. A more fruitful debate on appropriate monetary policy reactions to developments on financial markets
would be possible if the focus were redirected from financial bubbles to the issue of procyclicality.”
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sell assets which drives their prices down. This puts further pressure on their capital base, creating

a feedback loop of deleveraging and fire sales.4 Financial cycles could also be aggravated by adverse

incentives. Farhi and Tirole (2009) show that it is rational for all financial intermediaries to choose a

risky business model with a high degree of leverage and an aggressive maturity transformation, if their

exposure to liquidity risk is highly correlated. This is due to the fact that the materialization of highly

correlated exposures for the whole banking system creates a systemic event, thereby forcing the central

bank to step in with liquidity injections, which in turn eliminates a lion’s share of the downside risk.

2.3 Are financial investors behaving non-rational?

It is important to stress that the new line of research summarized above does not consider financial market

agents to be non-rational. Nor is it necessary to make stark assumptions such as cyclical developments of

risk preferences. Adrian et al. (2010) argue that an outsider looking at the patterns of financial market

activity might be tempted to reach such conclusions. However, they emphasize that the driving force

of financial procyclicality is not a shift in fundamental preferences but rather an outcome of several

frictions, e.g. sticky leverage targets and procyclical risk management methodologies. They come into

place as soon as, for whatever reason, interest rates and/or asset prices change. They indeed affect the

risk appetite as an important force in determining risk premia, but this has to be distinguished from the

more fundamental concept of risk aversion. We rather think of these frictions as a behavior which can

be regarded as bounded rationality in the sense of Tversky and Kahneman (1974). For instance, risk

management techniques such as Value-at-Risk (VaR) and internal rating approaches can be regarded as

biased heuristics in a complex world, which have obvious methodological drawbacks but which deliver an

acceptable performance under usual circumstances. Hence, we believe that models with heterogeneous

agents acting under bounded rationality are a reasonable alternative to model financial cycles and their

stylized facts.5

3 The Model Set-up

In this section, we describe our modeling strategy. Our model consists of two submodels. One describes

an extended behavioral macroeconomic model. The other one provides the law of motion and dynamics of

the financial market. We take the existence of heterogeneous agents and bounded rationality seriously in

4 Fire sales according to Shleifer and Vishny (2011) can be understood as a process where simultaneously finance-
constrained investors face the urgent need to sell off assets, (or the inability to buy them respectively) which finally
leads to a depression of asset prices below their fundamental values. Usually, this is supplemented by sharply rising
collateral rates. See Brunnermeier (2009) for an insightful description of these mechanisms during the current financial
crisis.

5 See Hommes (2006) for an insightful survey.
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the spirit of an adaptive belief system (ABS, Brock and Hommes, 1997, 1998). For our purpose, the ABS

implies that (i) the population of agents differ in the real and financial markets (ii) agents do not possess

a full information set nor full knowledge of the economy, nor adequate information processing capacities

in order to form rational expectations (iii) in each market, agents interact through an evolutionary

strategy switching process. Each agent uses an heuristic that guides her behavior and her forecasting

rule. Moreover, following Lengnick and Wohltmann (2010), we assume that the frequency of trading on

the financial market is higher than the frequency of transactions taken place in the goods market. Agents

of the real sector, therefore, are not able to engage in high frequency trading; nor are financial market

participants in the position to be actively engaged in goods markets transactions. Financial agents can

be best seen through the lense of institutional investors allocating wealth of ultimate savers.

However, what all agents have in common is that they use simple heuristic rules to make forecasts

of the relevant state variables. The population of agents endogenously chooses among those rules that

forecast best in the past. Since agents use different heuristics, the expectation formation is heterogeneous.

3.1 The Macroeconomic Model

The macroeconomic model resembles the three-equation representation of the New-Consensus model

economy where output dynamics are described by an aggregate demand equation, inflation dynamics by

an aggregate supply equation and monetary policy is conducted according to an interest rate reaction

function (Allsopp and Vines, 2000; Woodford, 2003; Goodfriend, 2007).

We part with the paradigm of starting from the ‘top-down’ perspective, where agents fully understand

the complexity of the system; instead, we apply the ‘bottom-up’ approach where agents are incapable to

understand the system as a whole (De Grauwe, 2010; DeGrauwe, 2011).

The output gap is specified in the reduced-form way

xq = a1Ẽq[xq+1] + (1− a1)xq−1 − a2(iq − Ẽq[πq+1] + ζq) + uq (1)

where xq is the output gap which depends on its own forward-looking expectation, denoted by Ẽq[xq+1],

on its own lag, xq−1, on the ex-ante risky real interest rate, iq − Ẽq[πq+1] + ζq and on a disturbance term

uq.
6 In this respect, the short-term nominal policy rate is denoted by iq.

Compared to the reduced-form representation of the prototype New-Keynesian aggregate demand

equation, two modeling issues are fundamentally distinct. Firstly, despite being in their nature forward-

6 For example, small New-Keynesian models with both leads and lags are Clarida et al. (1999); Cho and Moreno (2006).
Typically, the ex-ante real interest rate enters the demand function through the consumption Euler relation and the
lag term is derived from some form of habit formation in the consumption process of the representative household
(Fuhrer, 2000; Woodford, 2003).
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looking, expectations in this model specification are non-rational (denoted by the tilde above the expec-

tations operator). Expectations on the future output gap and expected inflation, Ẽq[πq+1], are build as

the average forecast of a set of heterogeneous agents applying different heuristic forecasting rules (more

on that later).

Secondly, we allow for a modified financial propagation effect following the risk-taking channel of

monetary policy transmission (Borio and Zhu, 2008). Instead of using the financial accelerator model

of Bernanke et al. (1999) which has recently been applied to the New-Keynesian model economy by

Castelnuovo and Nistico (2011), in our model, financial market activity affects real outcomes by the risk

taking capacity of financial agents. As already sketched out, Adrian and Shin (2009b) and Adrian et al.

(2010) highlight the close relationship between rapid growth of financial actors’ balance sheets, lower

risk premia, and higher real activity. We implement this channel in the aggregate demand equation by

introducing a risky real interest rate that determines the output gap. It is defined as rrq = iq−Ẽq[πq+1]+ζq

with ζq describing the spread between the riskless and the risky ex-ante real interest rate. The risk

premium, in turn, depends on the risk appetite of the financial sector and on macroeconomic conditions;

the latter imbed lagged variables of output and policy rate dynamics. Risk appetite is determined in the

financial market; a complete characterization of the risk premium is, thus, given in Section (3.2).

Inflation dynamics are specified by a conventional hybrid New-Keynesian Philips curve with inflation

πq being influenced by its own lead and lag, by the current output gap as well as a disturbance term

vq.
7 Again, expectations are non-rational; they denote the average forecast of the projections of the

population of heterogeneous agents.

πq = b1Ẽq[πq+1] + (1− b1)πq−1 + b2xq + vq (2)

Finally, the model is closed by a standard interest-rate reaction function for the short-term nominal

policy rate with monetary policy reacting to the current inflation gap (πq − π∗q ) and to the output gap.

Here, the central bank’s inflation target is denoted by π∗q . Moreover, monetary policy has the degree of

freedom to respond to an additional set of variables (denoted by the vector χq). These variables may

reflect financial market or other policy-relevant dynamics. As will be discussed later on, there might arise

a rationale for monetary policy to directly address the emergence of financial cycles.

iq = c1iq−1 + (1− c1)[c2(πq − π∗q ) + c3xq + c>4 χq] + wq (3)

7 For a review of price-setting equations, the reader is referred to Mankiw and Reis (2010).
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Market forecasts of the macro state variables are derived from simple heuristic rules. Agents perma-

nently update their forecasting rules in order to make optimal forecasts by means of minimizing forecast

errors.8 In this respect, following Brock and Hommes (1997); Branch and Evans (2011), this ‘learning’

mechanism is generated by switching between a pre-defined set of forecasting rules which perform best

in the recent and past market environment. Despite the use of biased forecasts, agents act rational as

they rank their forecasting models in accordance with their mean squared error (MSE).9 We assume

that agents forecast the set of macroeconomic variables yq+1 = (xq+1, πq+1) by pre-specified forecasting

rules gi,jq with j = {x, π} and i denoting the number of forecasting rules. Notice that these rules are

exogenously fixed in the model, thereby reflecting bounded rationality. In its general form, the market

forecast for a state variable, i.e. the market state of belief, can be derived as the first moment of the

aggregate distribution of individual beliefs. It holds that Ẽqyq+1 = N−1
∑N
i=1 g

i
q (Kurz, 2011).

Output forecasts. We apply two types of forecasting rules, that shape agents’ individual market belief

gi,xq with i = {f, ad}. The first rule is labeled the fundamentalist rule where agents estimate, eventually

by good luck, the steady state value of the output gap which is normalized to zero (see also on this

account DeGrauwe, 2011). The second rule is associated with adaptive expectations where agents form

expectations about the output gap in period t + q based on the realized output gap of period q − 1. It

holds that

gf,xq : Ẽfq [xq+1] = 0 (4)

gad,xq : Ẽadq [xq+1] = xq−1. (5)

Inflation forecasts. Forecasts for the inflation outlook are produced in a similar vein with two fore-

casting rules; the first rule, again, is a fundamentalist rule that captures agents’ belief in monetary

policy credibility; it relies on the central bank’s announced inflation target π∗q where the inflation target

is normalized to zero. The second rule belongs to the adaptive forecast according to which inflation

expectations are built upon realized inflation. The rules are written as

gf,πq : Ẽfq [πq+1] = π∗q (6)

gad,πq : Ẽadq [πq+1] = πq−1. (7)

8 Unpublished work by Lengnick and Wohltmann (2011) is using the same forecast rules. As we do, they rely on the work
of De Grauwe (2010) and DeGrauwe (2011). We consequently obtain similar macro setups. However, the interaction
channels between financial market and real economy differs substantially.

9 For a methodological discussion on the different concepts of rational expectations, rational beliefs, diverse beliefs and
the presence of private vs. public information, the reader is referred to Kurz (2011).
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Agents choose from this set of different beliefs/rules for future macroeconomic variables. This predic-

tor selection depends on the fitness and performance measures based on the MSE of the forecasting rules.

The utility, as measured by the sequence of MSEs, of applying one of the forecasting rules is specified as

U i,jq = −
∞∑
k=1

ωk

[
yj,q−k − Ẽiq−k−1]2 (8)

where ωk are geometric declining weights (De Grauwe, 2010). The weights attached to the MSEs over

time decline with the effect that the most recent forecast errors exhibit a greater impact on utility than

errors made in the distant past. According to discrete choice theory, the proportion (and probability) of

agents choosing one of the two forecasting rules for the expected output gap and inflation is determined

by a multinormal logit distribution of the form

αi,jq =
exp(γU i,jq )

exp(γUf,jq ) + exp(γUad,jq )
. (9)

The agent’s individual belief represents a random draw with Pr[gi,jq = f, j] = αf,jq and it holds that

αf,jq + αad,jq = 1 for j = x, π. Consequently, the market forecast (belief) is the pair of the proportions

with

Ẽq[xq+1] = αf,xq Ẽfq [xq+1] + αad,xq Ẽadq [xq+1] with αf,xq + αad,xq = 1 (10)

Ẽq[πq+1] = αf,πq Ẽfq [πq+1] + αad,πq Ẽadq [πq+1] with αf,πq + αad,πq = 1. (11)

As highlighted by Kurz (2011), such a model specification allows for diverse beliefs according to the

forecast classes. Within each class, agents are identical; across classes their expectations diverge.

Equation (9) describes the choice for a forecasting rule. Consider the case of i = ad and j = π. With

increased utility (and therefore greater fitness) of inflation forecasts based on adaptive expectations, the

share of agents selecting the rule gad,πq increases. In this respect, the parameter γ is the intensity of

choice. It measures how fast agents switch between different forecast strategies. If the intensity of choice

approaches infinity, the entire population applies that forecasting rule that performs best over the time

horizon. In contrast, if γ is set to zero, the choice for a prediction strategy is entirely stochastic implying

that agents distribute themselves evenly across the set of strategies. Then, the probabilities of forecasting

inflation and output according to the fundamental and adaptive rule each take on values of exactly 0.5.
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3.2 The Financial Market Model

In order to guarantee consistency of modeling the economy, we likewise apply the agent-based approach

to the financial market. Work on agent-based financial models shares in common that the presence of

heterogeneous and boundedly rational agents triggers complex and adaptive endogenous dynamics arising

from non-linearities in the financial market (Brock and Hommes, 1998; Hommes, 2006; LeBaron, 2006).

In our model, the financial market is populated by interacting agents trading a representative real asset;

its gross price is denoted with St. Agents are supposed to align their physical asset orders in accordance

to expected asset price changes (Westerhoff, 2008; Lengnick and Wohltmann, 2010). Moreover, we assume

that the fraction of agents following an adaptive trading strategy is balance sheet constrained implying

that leveraged asset purchases may provoke asset price reversals in the case the constraint becomes

binding (Thurner et al., 2010).

We start by describing the heuristic trading rules agents are equipped with in order to predict the

future asset price. In general, these rules rely on a mispricing signal upon which agents base their positive

or negative asset demand, where negative asset demand corresponds to selling assets in the market.

Noise traders: The first forecasting rule is based on the concept of noise where investors base their

asset demand simply on a white noise process. Economic news and past information on asset price

dynamics do not play a role at all.10 The expected asset price change is calculated as

gNt : ENt [St+1 − St] = kN [εNt ] (12)

where kN denotes the strength of the influence of the noise term on the expected price change. Since

the expected price development is positively related to the order demand, the demand function of agents

pursuing a noise strategy can be written as

DN
t = lENt [St+1 − St] = aεNt with a = lkN . (13)

The parameter l is a positive reaction parameter mirroring the aggressiveness of the trading strategy.

Fundamental traders: Within this class, agents expect that the asset price may diverge from its

fundamental value Ft but the misalignment is going to be corrected with the market price converging to

its long-run, fundamental value. The mispricing signal governs the expected price change according to

gFt : EFt [St+1 − St] = kF [Ft − St]. (14)

10 Alternatively, the existence of noise traders in the market can be justified by limits of arbitrage (Shleifer and Vishny,
1997). For a more general perspective on various aspects derived from behavioral finance, in particular on the effects
of market psychology for market dynamics, the reader is referred to Barberis and Thaler (2003).
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Notice that Ft denotes the perceived fundamental value on part of the fundamentalist. It does not need to

be equal to the true fundamental value F̄ (for the difference see Section (3.3), and in particular Lengnick

and Wohltmann (2010)). The order demand then follows

DF
t = lEFt [St+1 − St] = b(Ft − St) + εFt with b = lkF (15)

where a noise term is added to the demand equation. A fundamental trading rule implies that order

demand is positive whenever the fundamental value of the asset exceeds the current market value. Con-

versely, asset demand becomes negative if fundamentalists perceive the asset price to be over valued.

Momentum traders: Agents rely on technical analysis trying to extrapolate observed price patterns.

There are various specifications to apply technical analysis; we rely on a trend-following strategy of the

form

gMt : EMt [St+1 − St] = kM [St − St−1] (16)

where the memory factor is characterized by only one lag. Again, order demand can be expressed as

DM
t = lEMt [St+1 − St] = c(St − St−1) + εMt with c = lkM (17)

with the most recent past price trend being extrapolated. A random term, εMt , is added to the asset

demand to account for a variety of possible momentum strategies that are not captured by the simple

form used here (Westerhoff, 2008).

Agents choose between the specified strategies gzt with z = {N,F,M} according to the corresponding

fitness. In this respect, the attractiveness of a strategy is determined by a performance measure that

calculates the realized profits of trading rule z

Azt = (St − St−1)Dz
t−2 + gAzt−1. (18)

The higher the weighted average of realized profits, the higher the attractiveness of the trading rule.

This can be modeled by two components. The first component of Equation (18) reflects the profit of

orders which are submitted in period t− 2. The profit is evaluated with a lag of one period. The second

component captures the memory factor g which measures how fast the attractiveness is discounted for

strategy selection.
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Like in the macroeconomic model, discrete choice theory gives an answer how beliefs are updated over

time and how the proportions of agents using one of the pre-defined trading rules evolve. It holds that

W z
t =

exp(eAzt )

exp(eANt ) + exp(eAFt ) + exp(eAMt )
. (19)

Again, the fractions W z
t add up to 1 and e is the intensity of choice parameter.

The price adjustment process is modeled as a price-impact function where the quantity of physical

excess demands (Dz
t ) are related to the price change. The price function is given by

St+1 = St + d{
3∑
z=1

W z
t D

z
t } (20)

with prices adjusted according to observed excess demand (Kyle, 1985). The parameter d measures the

adjustment speed how fast excess demands are translated by the market maker setting the price.11

Balance sheet constraint of the momentum trader : We model the chartist to be balance-sheet con-

strained. This restriction allows us to draw implications of asset price dynamics when the balance-sheet

constraint is hit. As will be shown in Section (4), the modeling specification generates pronounced non-

linear price movements. In order to keep model dynamics tractable, we let the constraint bind only for the

proportion of agents following the momentum strategy.12 This is important because if we let the funda-

mentalists be likewise constrained in leveraged asset purchases, they may have not enough balance-sheet

capacity to generate asset orders that push the asset price back towards its fundamental value.

In what follows, we apply the market environment of Thurner et al. (2010) who model leveraged asset

purchases for a multi-agent hedge fund market with value investors. The fraction of momentum traders

is equipped with an initial cash position C0 that is equal to their capital position. Most generally, asset

purchases are financed by cash or by loans leading to a negative cash position; the total amount of loans

outstanding is calculated as Lt = max[−Ct, 0]. The asset side is written as the identity

Wt = StNt + Ct (21)

11 Notice that our price impact function is based on the gross asset price St. Market maker models with the gross price
are specified in Kyle (1985); Day and Huang (1990); Chiarella (1992). In these models, “the market maker mediates
transactions on the market out of equilibrium by providing liquidity” (Hommes, 2006:1135). The market maker services
excess demand by supplying stock out of his inventory (et vice verse when there is excess supply). In contrast, the
literature we rely on to build the financial market model usually takes a log-linear approximation of the market maker’s
price formation rule. Then, the price impact function refers to the log price (Farmer and Joshi, 2002; Westerhoff, 2008;
Lengnick and Wohltmann, 2010).

12 To be clear, in reality, agents are not able to instantaneously switch between a fundamentalist strategy and a leveraged
strategy in the presence of funding constraints. However, in our model, we can still rely on this switching mechanism
by making the assumption that changing weights in the population likewise reflects reallocations of funds by ultimate
savers to those agents that turn out to be most successful in terms of profits in the recent past.
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where Nt represent the total amount of the asset hold on the balance sheet. Therefore, the laws of motion

for asset holdings and the cash position are

Nt = Nt−1 +DM
t (22)

Ct = Ct−1 − (Nt −Nt−1)St. (23)

Our leverage ratio is given by

λt =
StNt

StNt + Ct
. (24)

Notice that the ratio changes due to (i) a pure valuation effect, i.e. an increase in the asset price and (ii)

a balance sheet expansion/contraction through asset purchases/sales and a corresponding change in the

cash or loan amount.13

Momentum traders are required to maintain a maximum permitted threshold λmax
t . One can think of

this threshold as either (i) fixed by funding suppliers (which we do not explicitly model here) or (ii) fixed

by a regulatory agency. Moreover, maximum leverage can be pure exogenous to the market environment

or it can be adjusted endogenously to market conditions. The insights of macroprudential regulation

indicate that it is advantageous for policymakers to apply time-varying instruments conditioned on market

dynamics (Borio, 2010). Therefore, the endogeneity is achieved by allowing the maximum leverage to

increase in times of low market volatility. In contrast, maximum permitted leverage decreases when asset

volatility picks up speed. It holds that

λmax
t = max

[
1,

λmax

1 + %σ2,S
t

]
(25)

where σ2,S
t measures the variance of the asset price over an observation period of τ time steps. The

parameter % is the strength of response by the regulator when volatility changes.

In order to reveal the implications of balance sheet effects of momentum traders, we set up a coordi-

nation game between the ’balance sheet risk manager’ and the ’trading strategist’. The risk manager’s

task is to permanently evaluate the balance sheet position on a mark-to-market basis in order to ensure

that the maximum permitted leverage is not exceeded. The trading strategist has the aim of buying or

selling the asset on the basis of the mispricing signal she receives. The coordination can best described

by a sequence of actions to be taken within one period.

13 A small drawback of this measure is its somewhat unintuitive behavior if the cash position is positive. A rising asset
price and the associated positive valuation effect lead to an increase of the leverage ratio which is at odds with basic
balance sheet arithmetics. With a negative cash position, the ratio behaves correctly.
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At the beginning of period t, the risk manager arrives with the following asset position from the

’evening’ of the previous period t− 1:

Wt−1 = Nt−1St−1 + Ct−1. (26)

When starting her trading portal, the risk manager observes the new traded price St.

At the same time, the trading desk opens with traders likewise observing the new price St upon which

the trading strategy is based upon. In particular, following the momentum strategy, the trader articulates

the additional physical asset demand Nadd
t for the current day t based on the observed price St. She

communicates the desired volume of additional physical asset demand to the accountant.

The risk manager calculates the new desired balance sheet position which involves (i) considering the

desired asset demand of the trader and (ii) valuing total desired asset holdings (holdings of the previous

period Nt−1 plus the desired asset demand Nadd
t ) marked-to-market at the observed asset price St.

Wt = Nt−1St +Nadd
t St + Ct

Wt = NtSt + Ct (27)

with

NtSt = (Nt−1 +Nadd
t )St (28)

Ct = Ct−1 −Nadd
t St. (29)

In a next step, the risk manager needs to calculate the leverage ratio based on the desired balance sheet:

λt =
NtSt

NtSt + Ct
. (30)

Now, the she compares the desired leverage λt with the maximum permitted leverage λmax
t .

If λt does not exceed λmax
t , then there is leeway to leverage up and asset demand is realized according

to the trading rule DM
t . The balance sheet is set up according to Equation (27) at the end of period t

(evening).

If λt exceeds λmax
t , the accountant must calculate the required amount of asset demand to restore

λmax
t . She then submits a binding command to generate exactly the asset demand by the trader.14

14 A situation may arise where a very strong positive mispricing signal leads to a large desired additional demand of the
trading strategist. It is now however possible that the risk manager refuses to confirm the order in its entire amount,
since a very large amount of credit-financed additional demand might produce a violation of the leverage constraint.
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The required amount of additional physical asset demand qt in case of the binding constraint can be

calculated by the balance sheet identity.

λmax
t =

NtSt
NtSt + Ct

λmax
t =

Nt−1St + qtSt
Nt−1St + qtSt + Ct−1 − qtSt

λmax
t (Nt−1St + qtSt + Ct−1 − qtSt) = Nt−1St + qtSt

qt = Nt−1(λmax
t − 1) + λmax

t

Ct−1
St

. (31)

Therefore, if the asset price falls, Equation (31) predicts that qt becomes negative for a negative cash

position, i.e. a positive amount of outstanding loans, and becomes even more negative with a higher

λmax
t .

Finally, we allow for the possibility of default on part of the class of momentum traders. Whenever

the valuation effect leads to a negative net worth position with Wt < 0, we model a stylized default.

Momentum traders are removed from the market with the effect that their proportion WM
t shrinks to

zero and they are reintroduced in the next period with the initial cash position C0.

3.3 Market Interconnections, the Risk Premium and Solving the Model

Like in Lengnick and Wohltmann (2010), both submodels operate on different time scales. The financial

market model is supposed to be set up on a daily basis t; whereas the macroeconomic model exhibits

a quarterly frequency q; quarter q is assumed to contain 64 trading days. Each variable derived from

the financial market model is transferred to the quarterly model by simple taking the mean of the daily

realizations for one quarter. For instance, for the quarterly asset price, it holds that

Sq =
1

64

64q∑
t=64(q−1)+1

St. (32)

The question is now how both models are interconnected to each other. The macroeconomic model

affects the financial market in terms of the perceived fundamental price Ft. Although the true, steady

state fundamental value F̄t is a constant, trader’s perception about the fundamental value depends on

the most recent real activity, i.e. the output gap. It holds that

Ft = h exp (xq) for t = 64(q − 1) + 1 : 64q. (33)
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In our model, the perceived fundamental price diverges from the true fundamental value for a number

of reasons. According to the no-arbitrage pricing theory, an asset’s price reflects expectations about the

future underlying payments generated by the asset, discounted to the present. The discount factors, in

turn, are determined by the future path of interest rates with the relevant maturities augmented by a

risk premia compensation whose size depends on the riskiness of the respective asset Cochrane (2001).

Due to the presence of bounded rationality, we assume that agents are not equipped with the objective

probability distributions of future cash flow streams and the path of discount rates. Therefore, agents

try to approximate the fundamental value by the recent real activity.

The dynamics within the financial market flip back to the real economy by the presence of the macro

risk premium ζq that enters the aggregate demand equation. Motivated by the insights of the risk-taking

channel and the interplay of asset price, balance sheet as well as leverage dynamics, our macro risk

premium reflects the degree of expansion in the financial market. As Adrian et al. (2010) make clear,

risk appetite highlights both (i) the constraint in the financial sector and (ii) preferences of agents who

actively trade in the market. In their model, active management of balance sheets by means of meeting a

target Value-at-Risk (VaR) triggers portfolio choices that lead to fluctuations in the market price of risk

in the economy.

From an asset pricing perspective, the risk premium on a specific asset is composed of two components,

i.e. the quantity of risk and the market price of risk. The quantity of risk describes the covariation

between the stochastic discount factor and the expected return on the asset; whereas the market price of

risk measures the required risk compensation per unit of risk; it is the same for all assets and equals the

reciprocal of agents’ risk appetite. Overall risk appetite depends on agents’ reluctance towards uncertain

outcomes and the level of aggregate, non-diversifiable, macroeconomic uncertainty. The latter typically

relies on the macroeconomic environment and moves periodically in response to macroeconomic factors

(Gai and Vause, 2006). For our modeling purposes, we model the risk premium, i.e. the credit spread,

as a linear combination of both financial market and macroeconomic variables

ζq = m1∆sq +m2xq +m3iq +m4σ
2,x
q +m5σ

2,π
q +m6σ

2,i
q . (34)

The balance sheet expansion of the financial sector and hence its risk appetite is measured by the change in

the (log-) asset price between two quarters. This change reflects both the heterogeneous trading strategies

of the population of agents and the possibility that the leverage constraint of the momentum traders binds.

The endogeneity of trading weights and the existence of an adaptive trading strategy generates a positive

feedback loop of rising asset prices and amplifying fluctuations in the real economy. If there is a strong

expansion of financial market activity, this should be reflected in higher asset price growth. However,
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if the leverage constraint is hit due to valuation effects and momentum traders are forced to de-lever,

asset demand plumps and the credit spread increases. Risk appetite, thus, determines the macro risk

premium of the economy. Like in Adrian et al. (2010), changes to risk appetite are not triggered by

varying risk preferences, but the apparent change emanates from the strength of trading and the leverage

constraint.15 To account for other aspects of the risk-taking channel, we allow for lagged values of the

output gap and the interest rate to enter the risk premium equations. In particular, Gambacorta (2009)

has shown that a lower level of the policy rate induces increased risk-taking which manifests itself in a

compression of required risk compensation. Finally, overall macroeconomic uncertainty as measured by

the volatility of the output gap, the inflation rate and the policy rate affects the macro risk premium.

To provide the laws of motion for the macroeconomic variables, the model is solved by first writing

the model equations in a structural matrix form. With the coefficient matrices appropriately chosen, the

model takes the form of

ΞXq = Ω̄ẼqXq+1 + Ψ̄Xq−1 + Λ̄εq (35)

where the variable vector Xq consists of Xq = [xq, πq, iq, ζq]
>. Macro shocks, the (log-) asset price and

the volatility measures are stacked into the vector εq = [u, v, w,∆sq, σ
2,x
q , σ2,π

q ]>. These variables are

purely exogenous to the endogenous state variables of the quarterly model. The reduced-form solution is

then given as

Xq = ΩẼqXq+1 + ΨXq−1 + Λεq (36)

with Ω = Ξ−1Ω̄,Ψ = Ξ−1Ψ̄,Λ = Ξ−1Λ̄

4 Simulation Dynamics

4.1 The Benchmark Simulation

The implications of the model dynamics can be revealed when calibrating the model to fit basic moments

and cross-correlations of state variables. As emphasized by Hommes and Wagener (2009), an important

problem arises within the behavioral approach due the presence of the many degrees of freedom. Het-

erogeneity in expectations formation inevitable increases the number of parameters which need to be

15 To make the point clear, in our model, risk preferences (risk aversion) of agents remain constant as measured by the
aggressiveness parameters of the trading rules. However, when the population of momentum traders dominates the
market, strong momentum of the asset price generates the positive feedback loop that spills over to the real economy.
In so far, the time-varying weights of traders reflect changes in the measured aggregate risk appetite.
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Table 1: Parameter Calibration

Calibration Values
macro model financial market model

a1 0.5 kN 0.04 m3 0.01
a2 0.2 kF 0.04 m4 0.2
b1 0.5 kM 0.08 m5 0.2
b2 0.05 l 1.0 σN 0.01
c1 0.5 g 0.975 σF 0.01
c2 1.5 e 300 σM 0.05
c3 0.5 d 1.0
c>4 0N×1 % 0
ρ 0.5 λmax 10
γ 10000 m1 -0.5

σx,π,i 0.005 m2 -0.01

quantified. However, in our opinion, the insights of this modeling strategy by allowing diverging expec-

tations to be a major source of business and financial cycle fluctuations outweighs the obvious drawback

of restricting the parameter set a-priori and somewhat ad-hoc. Since our macroeconomics model mainly

relies on the work of De Grauwe (2010); DeGrauwe (2011), except the macro risk premium, and the finan-

cial market follows partly the line of Westerhoff (2008), we stick to their parameter calibration whenever

possible.

Table (1) reports the calibration for the benchmark simulation; the parameter values of the macroe-

conomic model are those typically found in reduced-form New-Keynesian model estimates as in (Clarida

et al., 1999; Cho and Moreno, 2006). The financial market model is calibrated to fit basic properties of

empirical financial times series data; they include period of booms and busts. Moreover, the benchmark

simulation is conducted with the specification that the it entails an exogenous leverage constraint with

% = 0. The maximum permitted leverage λmax
t is set at a constant value with the consequence that most

recent financial market conditions do not enter the leverage constraint. Moreover, it is assumed that

monetary policy follows a conventional Taylor-type interest-rate reaction function with positive reactions

coefficients for the inflation gap and output gap.

Figure (1) shows one ‘prototype’ simulation with one sequence of random draws for the stochastic

shocks. The time period covers 200 quarters or 12800 days, respectively. It covers the time series dynamics

for the output gap, inflation and the asset price as well as the degree of heterogeneity of agents prevailing

in the goods and financial market. The sub-figures of the macro variables are quarterly; whereas asset

price movements are depicted as the daily realizations of trading activity scaled to the quarterly abscissa.
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Figure 1: Baseline Simulation
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First of all, what appears eye-catching is the strong cyclical behavior of the output gap and inflation

for the simulation period. In particular, between quarter 85 and 110, output persistently is below its

steady value. The same holds for the inflation rate which deviates from the target for a prolonged

period of time. The sub-figures below the output gap and the inflation figures display the corresponding

proportion of agents following either the fundamentalist or the adaptive forecasting strategy for building

output and inflation expectations. In this respect, the black areas denote the proportion of agents who

use the concept of adaptive expectations formation. It becomes clear that in those states of the economy

that are dominated by type gad,xq -agents, the output gap becomes either positive or negative. In turn, the

latter depends on the market environment whether there are optimistic or pessimistic views on the future

path of the output gap. What is striking is the existence of a reinforcement learning process of boundedly

rational agents throughout the course of the business cycle. Agents switch to the forecasting strategy that

performed best in the recent past (Hommes and Wagener, 2009; De Grauwe, 2010). Expectations now

become self-fulfilling in the sense that a small sequence of random shocks or one single large shock to the

endogenous state variables in one direction makes it attractive to switch to the adaptive rule. The more

agents rely on this rule, the more likely the output gap or inflation moves in exactly the same direction,

thereby strengthening cyclical fluctuations. The business cycle then becomes increasingly expectations

driven and it is the outcome of endogenous waves of different kinds of expectations formations. For

agents permanently searching for the optimal forecasting rule, a reduction of the macro risk premium by

means of a financial market expansion can just represent a market scenario that induces them to switch

to the gad,xq , gad,πq -rules. Consequently, even if the macro risk premium has already adjusted towards

its fundamental value, macroeconomic expectations continue to push output and inflation away from

their steady state values. This holds particularly for the inflation rate where the size of the output gap

movements and the exogenous supply shock are not sufficient to initiate a negative feedback effect that

allows for an endogenously changing share of inflation expectations in favor of the perceived inflation

target π∗q .

Turning to the financial market, the presence of heterogeneous traders likewise matters for booms

and busts in the representative asset price. Whenever momentum traders, denoted by the black-shaded

area, dominate the market, the asset price decouples from its fundamental value.16 For instance, around

quarter 80, the asset price dynamic can be clearly interpreted as a boom period before it crashes back

to its fundamental value. The evolutionary switching between the two trading strategies produces these

‘speculative’ bubbles. What is worth mentioning is the fact that their existence is the result of individual

rational choice rather than the outcome of pure irrational behavior. Agents in the financial market choose

16 For the sake of completeness, the sub-figure at the bottom of Figure (1) depicts the weights of momentum traders
(black), fundamentalists (gray) and noise traders (white).
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the strategy which maximizes their utilities being determined by gross profit flows and measured by their

fitness functions. In so far, from time to time, the asset price is driven by rational animal spirits (Brock

and Hommes, 1998). From a technical perspective, what is happening is that the occurrence of a small and

positive random shock of the uninformed noise trade pushes the asset price away from its fundamental.

If, by chance, the momentum trader realized a positive gross profit based on the latest asset demand,

the fitness function ensures that the fraction of momentum traders in the trading population increases

which results in a widening of the mispricing signal. As a consequence, a self-reinforcing asset price boom

occurs with the fundamental strategy not being strong enough to counteract momentum in the financial

market. The turning point is reached whenever a negative shock generated by the noise trader is strong

enough to let the asset price drop. Then, trading opportunities based on a bullish market are erased and

the momentum as well as the fundamental strategy pushes the price back to its fundamental value. In

the worst case, the falling asset price can make the momentum trader force to deleverage which produces

a highly non-linear asset price reaction and the possibility of default. The black triangles mark market

events in which momentum traders default on their assets with their asset demands becoming nil and

their net worth position approaching zero.

Most interestingly, our macro-finance model is capable of replicating stylized facts and statistical

properties of price and return dynamics of a variety of asset classes. They include (i) asset prices follow

a near unit root process with prices persistently being decoupled from fundamentals, (ii) returns are

not predictable with no autocorrelation, (iii) the distribution of asset returns display fat tails and (iv)

asset returns exhibit excess volatility and clustered volatility.17 This implies on the one hand that in

an arbitrage-free market, price changes, i.e. returns, exhibit essentially no correlation indicating to the

property that expected returns are not predictable under the risk-neutral measure (Singleton, 2006). On

the other hand, however, during some periods of time, it appears that high volatility events tend to

cluster in time; high price changes tend to be followed by high price changes (et vice versa).

Figure (2) plots the basic return characteristics of the asset. The upper sub-figures represent the log

returns and the squared log returns for the simulation exercise. As suspected, returns follow a random

walk character with hardly any predictable component for the underlying data-generating process. The

lower left figure shows the autocorrelation function of log returns; evidently, autocorrelations show no

significant fluctuations around zero. However, the return process is characterized by fat tail events:

a simple test on the probability distribution of returns clearly dismisses the assumption of a normal

distribution. More probability mass is located in the tails and in the center of the distribution as measured

17 See for an overview of stylized facts Mandelbrot (1963); Ding et al. (1983); Pagan (1986); Cont (2001).
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Figure 2: Return Distribution
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by excess kurtosis.18 When turning to squared returns, we can identify the existence of clustered volatility

as measured by the autocorrelations of squared returns for the simulation run. They are positive and

exhibit a high degree persistence for a prolonged period of time. Finally, to shed light on the sources

of these observations, the lower right sub-figure shows a scatter plot for log returns in the dimension

size of returns and the weight of momentum traders in the market. There is a clear concentration of

returns around +− 0.05 for momentum weights between 10% and 60%. Weights between 60% and 90%

are associated with returns with the same size, but with a much lower frequency. Only if the market

essentially is dominated by momentum traders, returns blow up in either one direction. The fact that

weights between 60% and 90% are less frequent comes from the non-linearity of the reinforcement process.

Whenever momentum picks up speed, the fraction of agents applying the gMt -rule increases almost by a

jump process.19 All in all, the endogeneity of switching between forecasting rules produces the observation

of clustered volatility and fat tail outcomes.20

Whether non-fundamental asset price movements, de-leveraging processes and default events spill over

to the real economy via the macro risk premium mostly depends on the current macroeconomic condition

itself. In times of optimistic expectations concerning the future output gap, negative shocks from the

financial market are of minor importance, if at all. However, if output gap expectations are pessimistic,

contractive financial developments amplify pessimist views on the economy, thereby pushing the output

gap to even worse negative values. Due to the presence of endogenous expectations building on part of

the agents on both goods and financial market, the model is not capable to fully isolate the effect of

financial market activity on the real economy. Or to put it in on a nutshell, persistent and cyclical output

gap movements could be the outcome of either waves of adaptive macro expectations or financial market

developments or the combination of a self-reinforcing process of both components.21

18 Kurtosis κ is the fourth moment of a distribution and it measures how much of the variance is the result of infrequent
extreme deviations from the mean of the distribution. Here, the kurtosis takes on a value of κ = 17.8 which is clearly
higher than the kurtosis of a normal distribution with κn = 3.

19 Rational asset pricing models typically find it hard to replicate all the stylized facts. Only recently, some literature
has made progress to resolve the asset pricing anomalies. Time-variation in discount rates due to time-varying risk
aversion or time-varying aggregate macroeconomic uncertainty with changing conditional volatility and long run risks
are used as explanation attempts to resolve the puzzles (?Bansal and Yaron, 2004; Lettau and Ludvigson, 2005; Bansal
and Shaliastovich, 2010). In a recent asset pricing survey, Cochrane (2011:28) makes the point that theories based on
behavioral finance and bounded rationality can be likewise explained within the discount rate approach where distorted
expectations are captured by the difference between the risk-neutral and the historical probabilities of asset prices. To
him, it is rather a convention with “[...] the line between recent ‘exotic preferences’ and ‘behavioral finance’ [being] so
blurred that it describes academic politics better than anything substantive.”

20 For the sake of competentness, various other model specifications based on agent-based modeling or based on the
existence of learning agents using Bayesian updating generate boom-bust dynamics with excess as well as clustered
volatility (Lux and Marchesi, 2000; Cont, 2007; Branch and Evans, 2010; Bansal and Shaliastovich, 2010; Adam and
Marcet, 2011).

21 In the model economy of Lengnick and Wohltmann (2010), these effects can be to some extent separated from each
other because they equip agents on the goods market with rational expectations.
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4.2 Isolating Macro Impacts

This section further elaborates on the implications of the benchmark model specification. One decisive

distinction compared to the rational expectations paradigm is that for the same parameter calibration

setup, the responses of the endogenous state variable differ depending on the current market environment.

The latter, in turn, is determined by the weights of macro fundamentalists and adaptive agents as well as

the fraction of momentum, fundamental and noise traders. In order to isolate the effects of macroeconomic

shocks, we follow the procedure of Lengnick and Wohltmann (2010) of calculating the impulse responses

of selected macro and finance variables. In this respect, the model is simulated 2000 times for 2000

different realizations of the financial market random shocks; whereas the macro shocks are set equal to

zero. In each simulation run, we generate two model dynamics; the first by setting uq, vq, wq = 0 and the

second by setting the shocks likewise to zero except one particular macro shock that is supposed to take

on a value of one standard deviation at a particular time during the simulation process. Notice that the

random shocks associated to the financial market in each simulation are exactly the same. By calculating

the differences of the evolution of state variables between the two simulation runs, it becomes possible to

detect the isolated impact of macro shocks. It allows to analyze how a macroeconomic shock affects the

financial market and how resulting changes in asset price and leverage dynamics spill over again to the

real economy.

Figure (3) displays impulse responses for a negative policy rate shock, i.e. the central bank lowers its

rate by one standard deviation. The solid lines represent the mean responses of selected variables and the

dashed lines are the corresponding 95% quantiles. The model produces variable dynamics that are mostly

in line with stylized facts on business cycle dynamics (see for an empirical overview Taylor, 1995). A fall

in the policy rate is associated with a boost of aggregate demand as captured by a widening of the output

gap and an increase in inflation. In accordance with the risk-taking view, a fall in the short rate triggers

a fall in the macro risk premium which can be amplified by subsequent asset price dynamics following the

initial policy shock. However, the bandwidth of possible adjustments widely varies due to the presence of

market sentiment on the goods and financial market, even in the long-run, there remains a persistent effect

on the economy, particularly on the inflation rate. Inflation inertia is central in agent-based, behavioral

macro models; this has also been found by De Grauwe (2010). This becomes clear when observing the

95% quantiles outcomes of the state variables. For instance, the asset price can significantly rise with

the effect of compressing the macro risk premium further which produces exactly the procyclicality of

the system we are looking for. The state variables heavily depend on the initial market environment

concerning market expectations. Each simulation run with different random draws generates different

market expectations that have build up in the past. Consequently, there is some sort of path dependency
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Figure 3: Impulse Response Function to Interest Rate Shock
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in the evolution of the economy which can either act as a dampening effect on the macro shocks or it

can amplify shocks in terms of cyclical fluctuations and persistent deviations from the steady state. The

confidence intervals also confirm that the effectiveness of policy-rate changes on the financial market

heavily depend on market sentiment. High weights of trend-chasers and expectations extrapolators can

bring about a macro and finance response that is essentially ‘immune’ to unanticipated policy moves. As

the same should hold in case monetary policy raises its policy rate, interest-rate increases to fight asset

price bubbles might be ineffective - the proposition put forward by the proponents of the benign-neglect

view of how monetary policy should deal with asset price bubbles (Greenspan, 2002).

5 Monetary Policy and Macroprudential Policy

The exercise of the benchmark simulation pursues the aim of presenting the evolution of endogenous waves

of output expansion and contraction generated by market beliefs on both financial and goods markets.

In this section, we explore recent advances in both academia and policy institutions towards dealing

with procyclicality and financial market dynamics from a policy perspective. As already illustrated in

Equation (3), monetary policy is implemented by the appropriate setting of the short-term policy rate.

Notice, however, that in this section, we allow monetary policy to react to the macro risk premium that

ensures a negative feedback between inflation and output as well as financial market dynamics. Such

reaction is not the outcome of an explicit financial stability objective. Monetary policy is yet advised

to change the conventional Taylor rule in response to a varying risk spread by a way of increasing the

policy rate whenever the spread shrinks (et vice versa). Such policy response is welfare-improving since

it acknowledges that the relevant interest rate is not only the risk-neutral part but it is also affected

by variations in the risk premium. Consequently, it is an optimal response in order to shield the goods

market from financial procyclicality for the purpose of stabilizing inflation and output.22 The reaction

parameter χq is, thus, equal to ζq.

Ultimately, macroprudential policy has the aim of addressing the systemic risk component in financial

markets and the possible associated real disruptions. It includes (i) a time dimension, i.e. the evolution of

risk over time and its implications for procyclicality and amplification effects of the financial system, and

(ii) a cross-section dimension that describes the interlinkages between financial agents, how aggregate

common risk is distributed among them and how this common source of risk makes them vulnerable

to joint failures (Borio, 2010; Geiger, 2011). In our model, procyclicality is most pronounced when

momentum trades follow their trading strategy without bounds in a self-fulfilling way and with a positive

22 For a theoretical and rule-based explanation of this result see McCulley and Toloui (2008); Taylor (2008); Cúrdia and
Woodford (2009); Giavazzi and Giovannini (2010).
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feedback loop on asset price dynamics. The danger of non-linearities in the asset price and in the macro

risk premium are, thus, greater the higher is the fraction of momentum traders in the market. At the

same time, the more leveraged those trades are, the more likely is the presence of fire sales. Due to the

leverage constraint and marked-to-market valuation, traders are forced to sell the stock of assets which

can trigger a severe asset price bust with adverse effects on output. From a regulator perspective, the

objectives of minimizing financial and real procyclicality then is equivalent to minimizing volatility of the

asset price and the output gap. As already sketched out, the macroprudential regulator tries to achieve

this by varying the maximum permitted leverage inversely to the observed asset price volatility.

Figure (4) plots the standard deviations of the objective variables in the parameter space {c4, %}.

The parameter c4 captures the strength of the monetary policy reaction to the macro risk premium;

whereas the parameter % mirrors the macroprudential policy’s aggressiveness to asset price volatility. In

the respect, the lower abscissa draws the c4 space and the upper abscissa draws the % space. Notice

that the standard deviations are calculated as the outcome of a non-cooperative policy game implying

that monetary policy’s reaction function is altered taking macroprudential policy as completely inactive,

i.e. c4 = [−1, . . . , 0.2] and % = 0 (et vice versa with % = [200, . . . , 0] and c4 = 0).23 The values for the

unconditional second moments are the outcome of simulating the system for 100 different realizations of

the random generator with each simulation run consisting of 500 quarters.

With an increasing negative reaction to the macro risk premium, monetary policy is successful in

shielding output and inflation from financial procyclicality. The stronger the inverse policy response, the

lower are the macro standard deviations. At the same time, monetary policy indirectly may affect asset

price dynamics. A fall in the macro risk premium and an appropriate increase in the policy rate may

lead to changes in the perceived fundamental asset price such that pronounced asset price dynamics led

by trend-chasing strategy can be smoothed by increasing the mispricing signal on part of fundamental

traders so that actual asset price does not deviate too much from its fundamental value. However, this

part of monetary policy transmission in our model seems rather weak. Monetary policy is incapable of

changing asset price and leverage volatility by means of reacting to the macro risk premium. In contrast,

changing the maximum permitted leverage dependent on the current market environment is a powerful

instrument to stir asset price dynamics. As illustrated by the standard deviation of both the asset price

and leverage, macroprudential policy can dampen financial procyclicality without increasing the standard

deviations of the macro variables. Indeed, it supports stabilizing inflation and output though the macro

effects are less pronounced than an adequate monetary policy reaction. Turning to the policy instruments,

23 The choice for the parameter space for c4 comes from the observation, that with c4 > 0, monetary policy itself generates
positive feedback between the real economy and the financial market. For a sufficiently large value of c4, a generalized
Taylor principle does not hold anymore so that the asset price as well as the other state variables explode.
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Figure 4: Standard Deviations of Policy Variables

Output gap Inflation

Asset price Interest rate

Leverage Maximum leverage
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it is clear that macroprudential policy increases its instrument volatility the more aggressively it reacts

to market conditions. This is shown by the convex pattern of the maximum permitted leverage when

plotting against %. What is worth mentioning, however, is that it enables monetary policy, on average, to

react less volatile by its short-rate instrument in order to stabilize inflation and output. In this respect,

macroprudential supports monetary policy. Monetary policy, itself, is faced with a U-shaped pattern

of interest-rate volatility when reacting to the macro risk premium. This comes from the fact that a

highly negative macro risk premium reaction generates sharp interest reversals; along similar lines, a

positive response to the risk premium leads to an amplification of macro procyclicality which requires

sharp interest rate responses in opposite direction in order to stabilize inflation and output.
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6 Conclusion

We constructed a model which integrates the real economy and the financial market. Our transmission

channel of financial market activity to the real sector embraces a recent strand of literature shedding light

on the link between the active balance sheet management of financial market participants, the induced

procyclical fluctuations of desired risk compensations and their final impact on the real economy. Our

financial market submodel generates pronounced boom-bust cycles and - mainly due to the presence of

leverage - we obtain episodes of highly non-linear asset price reversals triggered by simultaneous fire

sales. The cyclical behavior of the model has to be mainly attributed to the abandonment of the rational

expectation assumption. It might appear somewhat inconsistent that we assume bounded rationality.

We indeed stress that financial market behavior can be viewed as rational under certain severe frictions

instead of assuming wildly irrational agents. But the emerging patterns of asset prices and discount rates

might not look rational at all. In our view, this comes from important frictions such as limited time

horizons in risk management models, and sticky return and leverage targets. They might literally force

fundamentally rational agents to behave as if they were not - from an outsider’s perspective. So, the most

sophisticated research strategy would be to explicitly model frictions for financial market agents and to

construct a micro-founded general equilibrium model with endogenous financial procyclicality. But to our

knowledge, all of the attempts undertaken in this direction (i) do not capture yet the entire characteristics

of endogenous financial procyclicality and (ii) are restricted to a two-period setup and therefore unable to

produce macro time series e.g. for policy analysis.24 Hence, we believe it is a pragmatic and sufficiently

reasonable modeling strategy to assume bounded rationality on financial markets. This assumption

essentially serves as a ’proxy’ for the frictions which turn out to be very difficult to model. Furthermore,

the tractability of our setup allows as to generate simulated time series. Nevertheless, we acknowledge

that an explicit modeling of these mentioned frictions in a general equilibrium setup would be crucial for

a deeper and more comprehensive understanding of the various feedback mechanisms and spillovers.

Concerning policy analysis, it becomes clear that a systematic and inverse central bank reaction to

changes of the macro risk premium is highly effective in shielding the real economy from boom and bust

episodes on the financial market. Macroprudential regulation in turn is well suited to smooth asset price

dynamics, since a countercyclical leverage regulation dampens debt-financed booms. However, we do

not formulate an optimal policy conclusion. It would be interesting to specify loss functions for both

the central bank and the macroprudential authority and to minimize them over the space of possible

parameter constellations, most likely with a numerical grid search. This procedure could also shed light

24 See for instance Cúrdia and Woodford (2009), Gertler and Kioytaki (2010) and Phurichai and Rungcharoenkitkul
(2010).
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on the issue of optimal coordination between both policies. See Angelini et al. (2011) for an approach

heading in this direction. We leave this as a question for future research.
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